
Experiments on accelerators

Martin Hilgeman

EMEA product technologist HPC

HPC team EMEA

• Intel Xeon Phi introduction

• Intel Xeon Phi technology

• Execution models

• Case studies

• TACC‖s Stampede

• Questions

Dell Confidential

Agenda

HPC team EMEA

Intel Xeon Phi
introduction

Dell Confidential

HPC team EMEA

What is MIC?

• Basic Design Ideas

– Leverage x86 architecture (CPU with many cores)

› x86 cores that are simpler, but allow for more compute throughput

– Leverage (Intel‖s) existing x86 programming models

– Dedicate much of the silicon to floating point ops., keep
some cache(s)

– Keep cache-coherency protocol

– Increase floating-point throughput per core

– Implement as a separate device

–Strip expensive features (out-of-order
execution, branch prediction, etc.)

–Widen SIMD registers for more throughput

– Fast (GDDR5) memory on card

4

HPC team EMEA

Intel Xeon Phi
technology

Dell Confidential

HPC team EMEA

Knights Corner Silicon Core Architecture

Code Cache Miss

L2
Ctl

L1 TLB and
32KB
Code
Cache

T0 IP
T1IP
T2 IP
T3 IP

Decode

16B/Cycle (2 IPC)

uCode

Pipe 1 Pipe 0

Scalar RF X87 RF VPU RF

ALU 0 ALU 1 x87

VPU
512b SIMD

 L1 TLB and 32KB
Data Cache

512KB
L2 Cache

To On-Die Interconnect

TLB
Miss

Handler

TLB Miss

TLB Miss

DCache Miss

H
W

P

L2 TLB

4 Threads
In-Order

Core

HPC team EMEA

Knights Corner Architecture Overview

Dell Confidential

• 8GB GDDR5 Memory
• 8 memory controllers, 16 GDDR5 channels, up to 5.5GT/s
• 300 ns access
• aggregate 352GB/s peak memory bandwidth
• ECC

HPC team EMEA

Knights Corner Architecture Overview Core

• Pentium scalar instruction set
(x87!)

• Fully functional

• In order-operation

• Full 64bit addressing

• 4 HW threads/core

• Two pipelines:

– Scalar

– Vector/Scalar

• Intel Confidential – NDA

Dell Confidential

HPC team EMEA

Porting checklist
for a GPU

Dell Confidential

HPC team EMEA

GPU porting check list – will my application run on a GPU at
decent speed?

1. High degree of instruction and loop level parallelism?

2. Are the parallel parts of the application self contained?

3. Data footprint on the GPU

– If too large, can it be split into chunks?

– If smallish, is there opportunity for data reuse?

4. Amount of host <-> device transfers need to be small, or
otherwise overlapped with computation on the CPU

Dell Confidential

Investigation to utilize a GPU

HPC team EMEA

Case Studies

Dell Confidential

HPC team EMEA

Case Study 1 –
Computation of
Stark Effects

Dell Confidential

HPC team EMEA

Application characteristics:

– Written in Fortran 90

– Serial application, main matrix is 20000 x 20000 elements

– Iterative scheme

Optimization approach

– Use of compiler and libraries targeted for the system

› For Intel: Intel Composer XE and Intel Math Kernel Library (MKL)

› For AMD: Open64 compiler and AMD Core Math Library (ACML)

– Compile with optimization *and* debugging symbols

› Debugging symbols to allow better code profiling

› Start with standard, sane compiler flags

Dell Confidential

Case study 1: computation of stark effects

HPC team EMEA

Jobs ran at the Dell/Cambridge HPC centre

PowerEdge C6220 with Intel Xeon E5-2670 2.6GHz

– 16 cores

– 64 GB memory

– RHEL 6.2

Dell Confidential

Test setup

HPC team EMEA

Building the application

– Use the Intel C compiler 12.0.1.293

– Compile with medium optimization and debug info: ―-O2 -g‖

– Let the compiler generate vectorized code where possible: ―-xAVX‖

– Make small code modification to use BLAS3 C interface from Intel MKL

Dell Confidential

Building the application

#include <mkl_cblas.h>

HPC team EMEA

Find application hot spots using Perfsuite

– Home page at http://perfsuite.ncsa.illinois.edu/

– Allows profiling of unmodified applications

– Measures by default an instruction profile timer

– Uses PAPI to access CPU performance event registers

– Generates xml output

– Freely available

Dell Confidential

Run and gather profiling information

Start profiling run
% export PS_HWPC_CONFIG=itimer.xml

% psrun bin.x86_64/nomatdia.exe

http://perfsuite.ncsa.illinois.edu/
http://perfsuite.ncsa.illinois.edu/

HPC team EMEA

Profile Information
==
Class : itimer
Version : 1.0
Event : ITIMER_PROF (Process time in user and system mode)
Period : 10000
Samples : 6191
Domain : all
Run Time : 62.00 (seconds)
Min Self % : (all)

Module Summary
--
Samples Self % Total % Module

 6170 99.66% 99.66% /home/dell-guest/martinh/app/nomatdia/work/02a_noopt_prof/nomatdia.exe
 9 0.15% 99.81% /lib64/libpthread-2.5.so
 8 0.13% 99.94% /usr/local/Cluster-Apps/intel/fce/11.1.073/lib/intel64/libifcore.so.5
 3 0.05% 99.98% /usr/local/Cluster-Apps/intel/fce/11.1.073/lib/intel64/libintlc.so.5
 1 0.02% 100.00% /lib64/libc-2.5.so

File Summary
--
Samples Self % Total % File

 5685 91.83% 91.83% /home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f
 472 7.62% 99.45% /home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tql2.f
 13 0.21% 99.66% /home/dell-guest/martinh/app/nomatdia/work/02a_noopt/main.f
 13 0.21% 99.87% ??
 8 0.13% 100.00% interp.c

Dell Confidential

Result

HPC team EMEA

File Summary
--
Samples Self % Total % File

 5685 91.83% 91.83% /home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f
 472 7.62% 99.45% /home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tql2.f
 13 0.21% 99.66% /home/dell-guest/martinh/app/nomatdia/work/02a_noopt/main.f
 13 0.21% 99.87% ??
 8 0.13% 100.00% interp.c

Function:File:Line Summary
--
Samples Self % Total % Function:File:Line

 1886 30.46% 30.46% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:120
 1098 17.74% 48.20% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:103
 1089 17.59% 65.79% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:83
 1004 16.22% 82.01% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:89
 393 6.35% 88.35% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:82
 257 4.15% 92.51% tql2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tql2.f:129
 138 2.23% 94.73% tql2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tql2.f:128
 117 1.89% 96.62% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:123
 48 0.78% 97.40% tql2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tql2.f:127
 30 0.48% 97.88% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:88
 26 0.42% 98.30% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:102
 11 0.18% 98.48% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:119
 10 0.16% 98.64% tred2:/home/dell-guest/martinh/app/nomatdia/work/02a_noopt/tred2.f:47
 8 0.13% 98.77% __write_nocancel:interp.c:0

Dell Confidential

Detailed result

HPC team EMEA

 1 SUBROUTINE TRED2(NM,N,A,D,E,Z)
 2 C
 3 INTEGER I,J,K,L,N,II,NM,JP1
 4 REAL*8 A(NM,N),D(N),E(N),Z(NM,N)
 5 REAL*8 F,G,H,HH,SCALE
 6 REAL*8 DSQRT,DABS,DSIGN
 7 C
 8 C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED2,
 9 C NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
 10 C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
 11 C
 12 C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A
 13 C SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING
 14 C ORTHOGONAL SIMILARITY TRANSFORMATIONS.

 78 DO 240 J = 1, L
 79 Z(J,I) = Z(I,J) / H
 80 G = 0.0D0
 81 C :::::::::: FORM ELEMENT OF A*U ::::::::::
 82 DO 180 K = 1, J
 83 180 G = G + Z(J,K) * Z(I,K)
 84 C
 85 JP1 = J + 1
 86 IF (L .LT. JP1) GOTO 220
 87 C
 88 DO 200 K = JP1, L
 89 200 G = G + Z(K,J) * Z(I,K)
 90 C :::::::::: FORM ELEMENT OF P ::::::::::
 91 220 E(J) = G / H
 92 F = F + E(J) * Z(I,J)
 93 240 CONTINUE Dell Confidential

What does tred2.f do?

Bad memory access
pattern

Sounds like a linear
algebra function

HPC team EMEA

 0.00 62.20 11/11 MAIN__ [1]
[3] 99.8 0.00 62.20 11 rs_ [3]
 57.34 0.00 11/11 tred2_ [4]
 4.86 0.00 11/11 tql2_ [5]

 57.34 0.00 11/11 rs_ [3]
[4] 92.0 57.34 0.00 11 tred2_ [4]

 4.86 0.00 11/11 rs_ [3]
[5] 7.8 4.86 0.00 11 tql2_ [5]

Profling with the ―gprof‖ command can generate a call stack

Dell Confidential

Who is calling the tred2 routine?

RS is the only routine
that calls tred2 for a
total of 11 times

…and is also the sole
caller of tql2…

What does the RS subroutine do?

HPC team EMEA

 SUBROUTINE RS(NM,N,A,W,MATZ,Z,FV1,FV2,IERR)
C
 INTEGER N,NM,IERR,MATZ
 REAL*8 A(NM,N),W(N),Z(NM,N)
 REAL (8) :: fv1(n), fv2(n)
C
C THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF
C SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK)
C TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED)
C OF A REAL SYMMETRIC MATRIX.
C
C ON INPUT:
C
C NM MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT;
C
C N IS THE ORDER OF THE MATRIX A;
C
C A CONTAINS THE REAL SYMMETRIC MATRIX;
C
C MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF
C ONLY EIGENVALUES ARE DESIRED; OTHERWISE IT IS SET TO
C ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGENVECTORS.

…

 20 CALL TRED2(NM,N,A,W,FV1,Z)
 CALL TQL2(NM,N,W,FV1,Z,IERR)

Dell Confidential

RS
RS is an eigenvalue
and/or eigenvector
solver

And calls both TRED2
and TQL2

HPC team EMEA

• The LAPACK library contains various routines for solving linear
algebra problems and matrix operations

– From the http://www.netlib.org home page:

LAPACK provides routines for solving systems of simultaneous linear equations, least-
squares solutions of linear systems of equations, eigenvalue problems, and singular value
problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized
Schur) are also provided, as are related computations such as reordering of the Schur
factorizations and estimating condition numbers. Dense and banded matrices are handled,
but not general sparse matrices. In all areas, similar functionality is provided for real and
complex matrices, in both single and double precision.

• There are highly optimized implementations available
from various sources

– Intel: Intel Math Kernel Library (MKL)

– AMD: AMD Core Math Library (ACML)

– Open source: Netlib, ATLAS, GOTOblas

Dell Confidential

Inserting an optimized eigenvalue solver

http://www.netlib.org/

HPC team EMEA

 SUBROUTINE RS(NM,N,A,W,MATZ,Z,FV1,FV2,IERR)
C
 INTEGER N,NM,IERR,MATZ
 REAL*8 A(NM,N),W(N),Z(NM,N)
#if defined (DELL_OPT)
 REAL (8), ALLOCATABLE :: work(:)
 INTEGER (4), ALLOCATABLE:: iwork(:)
 INTEGER (4) :: lwork, liwork, info, i, j
#else
 REAL (8) :: fv1(n), fv2(n)
#endif
…
#if defined (DELL_OPT)
C calculate the size of the work array
 20 lwork = 1 + 6*n + 2*n*n
 liwork = 3 + 5*n
 ALLOCATE (work(lwork), iwork(liwork))
C calculate eigenvalues and eigenvectors
 CALL dsyevd ('v', 'u', n, a, nm, w, work, lwork, iwork, liwork,
 . info)
 IF (info .NE. 0) THEN
 WRITE(*,*)'dsyevd failed:', info
 STOP
 END IF
 CALL fastbcopy8 (nm * n, a, z)
#else
 20 CALL TRED2(NM,N,A,W,FV1,Z)
 CALL TQL2(NM,N,W,FV1,Z,IERR)
#endif

Dell Confidential

Insert the LAPACK call in RS

LAPACK dsyevd call
used

HPC team EMEA Dell Confidential

Results

Wall Clock Time
(hh:mm:ss)

Original version 4:59:31

Inserted LAPACK dsyev call 0:07:18

Additional source optimizations 0:06:58

Can this be improved further?

HPC team EMEA

1. High degree of instruction and loop level parallelism?
No, but computational time is dominated by a LAPACK call

2. Are the parallel parts of the application self contained?
Yes, the LAPACK call can probably be changed to a GPU aware call?

3. Data footprint on the GPU

– If too large, can it be split into chunks?

– If smallish, is there opportunity for data reuse?

The matrix A is around 3 GB in size, so just fits on a GPU

4. Amount of host <-> device transfers need to be small, or
otherwise overlapped with computation on the CPU

Yes, the LAPACK function is only called once per iteration

Dell Confidential

Apply the GPU check list to my application

HPC team EMEA

1. CUBLAS

– Developed by NVIDIA

– Only contains BLAS functions

2. CULA

– http://www.culatools.com/

– Contains dense and sparse implementations of most LAPACK functions
(factorization, eigenvalue problems, least squares, decompositions)

– Costs $$$

3. MAGMA

– http://icl.cs.utk.edu/magma/index.html

– Dense LAPACK library targeted at hy\

–]rid GPU – CPU implementations

– Developed by Jack Dongarra‖s group

– Freely available
Dell Confidential

Availability of numerical libraries for CUDA

http://www.culatools.com/
http://icl.cs.utk.edu/magma/index.html
http://icl.cs.utk.edu/magma/index.html

HPC team EMEA

 USE magma
 USE cuda_alloc
 USE iso_c_binding
 INTEGER(4) :: stat
 REAL(8), ALLOCATABLE :: wid(:), yint(:)
 REAL(8), DIMENSION(:,:), POINTER :: xx
 REAL(8), PARAMETER :: real_size = DBLE(0.d0)
 type(C_PTR) :: cptr_xx
…

C Initialization
 CALL cublas_init()
…
C Allocate pinned host memory
 stat = cudaMallocHost (cptr_xx, lsize * lsize *
 . sizeof(real_size))
 CALL c_f_pointer (cptr_xx, xx, [lsize, lsize])
 ALLOCATE (wid(lsize), yint(lsize))

C Issue the LAPACK call
 CALL magmaf_dsyevd (‘v', 'u', n, a, nm, w, work, lwork, iwork,
 . liwork, info)

stat = cudaFreeHost (cptr_xx)

 CALL cublas_shutdown()

Dell Confidential

Insert the MAGMA call

LAPACK dsyevd call
used

HPC team EMEA

 magma_devptr_t :: devptrA
 INTEGER (4) :: lda, ldda, stat, ldwa
 INTEGER (4), EXTERNAL :: cublas_alloc
 REAL (8), ALLOCATABLE :: wa(:,:)
 INTEGER (4), PARAMETER :: size_of_double=8

C allocate GPU memory
 stat = cublas_alloc (ldda*n, size_of_double, devPtrA)
 IF (stat .NE. 0) THEN
 WRITE(*,*) "devPtrA allocation failed"
 STOP
 END IF

C copy A to device
 CALL cublas_set_matrix (nm, n, size_of_double, a, lda, devptrA,
 . ldda)

C issue the LAPACK call
 CALL magmaf_dsyevd_gpu ('v', 'u', n, devptrA, ldda, w, wa, ldwa,
 . work, lwork, iwork, liwork, info)

C copy A back to host
 CALL cublas_get_matrix (nm, n, size_of_double, devptrA, ldda, a,
 . lda)

Dell Confidential

GPU only version

LAPACK dsyevd call
used

HPC team EMEA Dell Confidential

Results

Wall Clock Time
(hh:mm:ss)

Original version 4:59:31

Inserted LAPACK dsyev call 0:07:18

Additional source optimizations 0:06:58

MAGMA hybrid CPU/GPU 0:03:52

MAGMA GPU only 0:03:51

MAGMA hybrid pinned host memory 0:03:41

Same as above, with M2050 card 0:02:04

HPC team EMEA

Case Study 2 –
Geospatial
imaging

Dell Confidential

HPC team EMEA

Application characteristics:

– Written in C90 and C++, ~ 150,000 lines of code

– Serial application, using Intel MKL DFTI functions

– Iterative scheme

Optimization approach

– Use of compiler and libraries targeted for the system

› For Intel: Intel Composer XE and Intel Math Kernel Library (MKL)

– Compile with optimization *and* debugging symbols

› Debugging symbols to allow better code profiling

› Start with standard, sane compiler flags

– Profile the application to find hotspots and function usage

Dell Confidential

Case study 2: Geospatial imaging

HPC team EMEA

Test Setup

Confidential 32

Jobs ran at the TACC Stampede system

PowerEdge C8220 with Intel Xeon E5-2680 2.7GHz

– 16 cores

– 32 GB memory

– RHEL 6.3

– Intel Xeon Phi 7120P

HPC team EMEA

• MKL FFTs are already being used, little room for improvement

– FFTs are too small to run in threaded mode

• Application only runs in serial mode, need to be parallelized in
order to run on a Phi in reasonable speed

• Phase images are divided into patches, which is suitable for
parallelization

– Parallelize the main loop using OpenMP

Dell Confidential

Code details

HPC team EMEA

Parallelization of big main loop
count = 1;
if (lastGCP != NULL) {
 app = lastGCP->next;
} else {
 app = bufferGCP;
}

while (app) {

 app->loc [0] = (int) app->loc [0];
 app->loc [1] = (int) app->loc [1];
 app->offset[0] = (int) app->offset[0];
 app->offset[1] = (int) app->offset[1];

 <lot of work>

 lastGCP = app;
 app = app->next;
 count++;
}

34 Confidential

count = 1;
if (lastGCP != NULL) {
 app = lastGCP->next;
} else {
 app = bufferGCP;
}

int i = 0;
int nthreads, me;
#if defined _OPENMP
#pragma omp parallel \
 private(i,me,app2,err,suboffset,qc,m_block,s_block)
{
 nthreads = omp_get_num_threads();
 me = omp_get_thread_num();
#else
 nthreads = 1;
 me = 0;
#endif

#pragma omp for schedule(static)
 for (i = 0; i < buffer_ngcp; i++) {
#pragma omp critical
 {
 app2 = app;
 app = app->next;
 }
 app2->loc [0] = (int) app2->loc [0];
 app2->loc [1] = (int) app2->loc [1];
 app2->offset[0] = (int) app2->offset[0];
 app2->offset[1] = (int) app2->offset[1];

 <lot of work>

 lastGCP = app2;
 count++;
 }
#if defined _OPENMP
}
#endif

HPC team EMEA Dell Confidential

Results

Wall Clock Time
(ss:00)

Original version on E5440 2.83 GHz 102.00

Original version on E5-2680 2.70 GHz 27.43

Additional source optimizations 25.83

2 threads 17.37

4 threads 9.97

6 threads 7.17

8 threads 5.77

12 threads 5.57

HPC team EMEA

Module Summary
--
Samples Self % Total % Module

 247 59.81% 59.81% /lib64/libc-2.12.so
 79 19.13% 78.93% /scratch/dell-guest/app
 38 9.20% 88.14% /opt/intel/mkl/lib/intel64/libmkl_core.so
 34 8.23% 96.37% /opt/intel/mkl/lib/intel64/libmkl_intel_thread.so
 10 2.42% 98.79% /opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so
 5 1.21% 100.00% /lib64/ld-2.12.so

File Summary
--
Samples Self % Total % File

 332 80.39% 80.39% ??
 64 15.50% 95.88% malloc.c
 10 2.42% 98.31% interp.c
 3 0.73% 99.03% bsearch.c
 2 0.48% 99.52% SRC/patch.c
 2 0.48% 100.00% printf_fp.c

Function Summary
--
Samples Self % Total % Function

 126 30.51% 30.51% brk
 69 16.71% 47.22% ??
 60 14.53% 61.74% _int_malloc
 43 10.41% 72.15% pmatch
 34 8.23% 80.39% memcpy
 13 3.15% 83.54% get_correlation_real_mkl
 10 2.42% 85.96% extract2double
 8 1.94% 87.89% __intel_new_memcpy Dell Confidential

A profile

HPC team EMEA

• Now runs multi-threaded using OpenMP directives

• Memory footprint is small, so should fit on the card

– Running in native mode is possible

• Intel MKL has complete support for Xeon Phi

Dell Confidential

How about Xeon Phi performance?

HPC team EMEA

Case study:
TACC’s
Stampede
system

Dell Confidential

Most of the following slides are from Jay Boisseau, director of TACC

HPC team EMEA

Stampede: Background

• TACC evaluation

–Linux/x86 easiest path for current users

–Needed add‖l perf from innovative component

› community really needs >> 2PF due to lack of recent
large-scale NSF HPC systems

› So, we considered ―acceleration‖ options for more PFs

–Evaluated GPU and MIC—decided on MIC

› Easier porting

› More programming options (x86)—not just acceleration

› Leveraging x86 optimization experience

› More ―innovative?‖ (Didn‖t exist yet…)

HPC team EMEA

Key Aspects of Acceleration

• We have lots of transistors… Moore‖s law is holding; this
isn‖t necessarily the problem.

• We don‖t really need lower power per transistor, we need
lower power per *operation*.

• How to do this?

HPC team EMEA

Coprocessor vs. Accelerator

Co-processor Accelerator

Architecture x86 Streaming processors

Coherent caches Shared memory and
caches

Programming
model

C/C++/Fortran + directives
OpenCL support planned

CUDA, OpenACC,
OpenCL

Threading
model

OpenMP and multithreading
MPI host/device/hybrid

Threads in hardware
MPI on host only

Programming
details

Offloaded regions
Native mode

Kernels, OpenACC

Scripting Yes No

Run on
device only

Yes No

HPC team EMEA

What We Like about MIC

• Intel‖s MIC is based on x86 technology

– x86 cores w/ caches and cache coherency

– SIMD instruction set

• Programming for MIC is similar to programming for CPUs

– Familiar languages: C/C++ and Fortran

– Familiar parallel programming models: OpenMP & MPI

– MPI on host and on the coprocessor

– Any code can run on MIC, not just kernels

• Optimizing for MIC is similar to optimizing for CPUs

– “Optimize once, run anywhere”

– Our early MIC porting efforts for codes “in the field” are frequently

doubling performance on Sandy Bridge.

HPC team EMEA

TACC’s Stampede: The Big Picture

• Dell, Intel, and Mellanox are vendor partners

• Almost 10 PF peak performance in initial system (2013)

–2+ PF of Intel Xeon E5 (6400 dual-socket nodes)

–7+ PF of Intel Xeon Phi (MIC) coprocessors (several
thousand)
› Special edition/release for this project!

• 14+ PB disk, 150+ GB/s I/O bandwidth

• 250+ TB RAM

• 56 Gb/s Mellanox FDR InfiniBand interconnect

• 16 x 1TB large shared memory nodes

• 128 Nvidia Kepler K20 GPUs for remote viz

• 182 racks, 6 MW power!

HPC team EMEA

HPC team EMEA

Stampede: How Will Users Use It?

• 2+ PF Xeon-only system (MPI, OpenMP)

–Many users will use it as an extremely powerful Sandy
Bridge cluster—and that‖s OK!

› They may also use the shared memory nodes, remote vis

• 7+ PF MIC-only system (MPI, OpenMP)

–Homogeneous codes can be run entirely on the MICs!

• ~10PF heterogeneous system (MPI, OpenMP)

–Run separate MPI tasks on Xeon vs. MIC; use OpenMP
extensions for offload for hybrid programs

HPC team EMEA

Will My Code Run on MIC?

• Yes

• That‖s the wrong question, it‖s:

–Will your code run *best* on MIC?, or

–Will you get great MIC performance without additional
work?

HPC team EMEA

Early MIC Programming Experiences at TACC

• Codes port easily

–Minutes to days depending mostly on library
dependencies

• Performance can require real work

–While the sw environment continues to evolve

–Getting codes to run *at all* is almost too easy;
really need to put in the effort to get what you
expect

• Scalability is pretty good

–Multiple threads per core *really important*

–Getting your code to vectorize *really important*

HPC team EMEA

Key Questions

Why do we need to use a thread-based programming

model?

MPI programming

Where to place the MPI tasks?

How to communicate between host and MIC?

HPC team EMEA

Programming MIC with Threads

• A lot of local memory, but even more cores

• 100+ threads or tasks on a MIC

• Severe limitation of the available memory per task

• Some GB of Memory & 100 tasks

➞ some ten‖s of MB per MPI task

Key aspects of the MIC coprocessor

One MPI task per core? — Probably not

 Threads (OpenMP, etc.) are a must on MIC

HPC team EMEA

• For most applications, Intel® Xeon® processor will continue to be “best”
choice

– Multi-core performance

– Great Vector and Integer performance

– Best per thread performance

– Large Memory Footprint

• For certain highly parallel applications, Intel® Many Integrated Core
architecture will provide enhanced performance

– Think HPC applications, but not limited to this segment

– Highly Parallel

› Computationally complex problems that can be broken down into smaller component
problems run in parallel

› Minimal Serial code (or serial code runs on host)

– Vectorizable (able to use SIMD instructions)

– Limited data dependencies

– Limited data set size

Which to Choose: Intel® Xeon® or Intel® MIC?

50

HPC team EMEA

• Intel® Xeon Phi™ coprocessor (Knights Corner) production in Q4 2012,

General Availability Q1 ―13

– KNC pre-production is not for general availability

• Range of available platforms from Dell

› Validating C8000, C410X, R720 and T620

• What to do now?

› The first step in optimizing code for Intel® MIC is to optimize for Intel® Xeon®

processors

– Ensure you code scales well with cores and makes use of SIMD

instructions

– E.g Parallelize & Vectorize your code

› If not already, use/become familiar with Intel SW tools

– Because Intel tools will be the first to support Intel® MIC

› Get help with parallel programming here:

– intel.com/go/parallel

– http://software.intel.com/en-us/articles/intel-guide-for-developing-

multithreaded-applications/

• Intel / Dell team look at ways to support customer opportunities

Next Steps

51

http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/

HPC team EMEA

• What to do now?

› The first step in optimizing code for Intel® MIC is to optimize for Intel® Xeon®

processors

– Ensure you code scales well with cores and makes use of SIMD

instructions

– E.g Parallelize & Vectorize your code

› If not already, use/become familiar with Intel SW tools

– Because Intel tools will be the first to support Intel® MIC

› Get help with parallel programming here:

– intel.com/go/parallel

– http://software.intel.com/en-us/articles/intel-guide-for-developing-

multithreaded-applications/

• Intel / Dell team look at ways to support customer opportunities

Next Steps

52

http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/

HPC team EMEA Dell Confidential

